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ABSTRACT
This paper introduces a cryptographic protocol for efficiently aggre-

gating a count of unique items across a set of data parties privately

— that is, without exposing any information other than the count.

Our protocol allows for more secure and useful statistics gathering

in privacy-preserving distributed systems such as anonymity net-

works; for example, it allows operators of anonymity networks such

as Tor to securely answer the questions: how many unique users are

using the distributed service? and how many hidden services are being

accessed?We formally prove the correctness and security of our pro-

tocol in the Universal Composability framework against an active

adversary that compromises all but one of the aggregation parties.

We also show that the protocol provides security against adaptive

corruption of the data parties, which prevents them from being

victims of targeted compromise. To ensure safe measurements, we

also show how the output can satisfy differential privacy.

We present a proof-of-concept implementation of the private

set-union cardinality protocol (PSC) and use it to demonstrate that

PSC operates with low computational overhead and reasonable

bandwidth. In particular, for reasonable deployment sizes, the pro-

tocol run at timescales smaller than the typical measurement period

would be and thus is suitable for distributed measurement.

CCS CONCEPTS
• Security and privacy→ Distributed systems security;

KEYWORDS
secure computation; privacy-preserving measurement

1 INTRODUCTION
Gathering statistics is a critical component of understanding how

distributed systems are used and/or misused. In privacy-preserving

distributed systems, such as anonymity networks, the statistics-

gathering process is complicated by the system’s privacy require-

ments. Naïvely recording statistics poses significant risks to the

system’s users and the use of such techniques [37] has been widely

∗
Co-first authors

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the United States

government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134034

debated [46]. Ideally, the statistics should be gathered privately —

that is, nothing should be learned other than the statistic itself.

In the setting of anonymous communication, several recent

papers have suggested methods of computing aggregate statis-

tics at a quantifiable cost to anonymity. The PrivEx system of

Elahi et al. [19] uses differential privacy [15] to privately collect

statistics about the Tor network [14]. PrivCount [30], which we

extend in this work, improves upon PrivEx by offering multi-phase

iterative measurements while offering an optimal allocation of the

ϵ privacy budget. Historϵ [36] is also inspired by PrivEx and uses

histogram-based queries to provide integrity guarantees by bound-

ing the influence of malicious data contributors.

While these secure measurement techniques significantly raise

the bar for safe measurements in anonymity networks, they lack

the ability to perform counts of distinct values among the data own-

ers. For example, PrivEx, PrivCount, and Historϵ can answer the

question—howmany clients were observed entering the Tor network?—

but cannot discern what fraction of the result constitutes unique

clients. That is, they cannot answer the (perhaps) more useful ques-

tion of how many unique clients were observed on Tor?

We refer to the problem of counting the number of unique values

across data owners as private set-union cardinality. More formally,

private set-union cardinality answers how many unique items are

recorded across a set of Data Parties (DPs) while preserving the

privacy of the inputs. Specifically, if there are d DPs and each

DPk contains a set of of zero or more items Ik , we want to know

|∪dk=1Ik | without exposing any element of any item set to an active

adversary. In instances where exact counts may reveal sensitive in-

formation, private set-union cardinality may naturally be combined

with differential privacy to provide noisy answers.

Motivation. Private set-union cardinality is useful in many set-

tings. For example, in the context of anonymity networks, it can

determine how many unique users participate in the service, how

many unique users connect via a particular version of client soft-

ware, and howmany unique destinations are contacted. Maintainers

of anonymity networks can also use private set-union cardinality

to determine how users regularly connect to the network (e.g., over

mobile connections, through proxies, etc.) and how the network is

used (e.g., the length of time that users spend on the network in a

single session).

For structured overlay networks such as Chord [47], private set-

union cardinality can determine the number of unique clients in

the network and the number of unique lookups, without exposing

users’ identities.

For the web, private set-union cardinality can serve as a building

block to determine the number of shared users among several sites,

without revealing those users’ identifiers.

https://doi.org/10.1145/3133956.3134034


More generally, private set-union cardinality allows researchers

and administrators of distributed systems to better understand how

such systems are being accessed and used. It enables system design-

ers to make informed, data-driven decisions about their systems

based on actual usage safely when privacy is required.

A protocol for private set-union cardinality. The primary

contribution of this paper is a private set-union cardinality protocol

that we call PSC. We formally prove the correctness and security of

PSC in the Universally Composable (UC) framework [6], ensuring

that PSC is secure when (arbitrarily) composed with other instances

of PSC and/or other UC protocols. PSC is robust against adaptive

attacks against the DPs, so that if an adversary compromises a DP

mid-collection, he learns only data collected post-compromise. The

protocol is largely carried out by a set of Computation Parties (CPs)

expected to be smaller than the set of DPs, and the protocol remains

secure as long as at least one CP remains honest.

We additionally introduce an implementation of PSC, released

as open-source software written in memory-safe Go. To achieve

greater efficiency, our implementation uses some subprotocols that

are not proven UC-secure, such as a verifiable shuffle [40] that is

more practical than verifiable shuffles proven secure in the UC

model (verifiable shuffles are explained in the next section). With

these subprotocols, our implementation can still be proven secure

in the classical (i.e. standalone) model and, as we demonstrate via

at-scale evaluation experiments, incurs only moderate bandwidth

and computation costs and can be practically deployed.

2 BACKGROUND
Before describing PSC, we briefly review some concepts and back-

ground that are necessary for understanding our algorithm.

Differential Privacy. Differential privacy [15] is a privacy def-

inition that offers provable and quantifiable privacy of database

queries. Differential privacy guarantees that the query responses

look nearly the same regardless of whether or not the input of

any one user is included in the database. Thus anything that is

learned from the queries is learned independently of the inclu-

sion of any single user’s data [31]. Several mechanisms have been

designed to provide differential privacy while maximizing accu-

racy [3, 16, 38, 42].

More formally, an (ϵ , δ )-differentially-private mechanism is an

algorithmM such that, for all datasets D1 and D2 that differ only

on the input of one user, and all S ⊆ Range(M), the following

holds:

Pr [M(D1) ∈ S] ≤ eϵ × Pr [M(D2) ∈ S] + δ . (1)

ϵ and δ quantify the amount of privacy provided by the mechanism,

where smaller values of each indicate more privacy. Dwork [15]

proves that binomial noise, that is, the sum of n uniformly random

binary values, provides (ϵ,δ )-differential privacy for queries that

each user can affect by at most one when

n ≥

(
64 ln(2/δ )

ϵ2

)
(2)

Eq. 2 presents a trade-off between privacy and utility, an issue

inherent to differential privacy. Put alternatively, for the privacy

level given by ϵ and δ , Eq. 2 yields the amount of binomial noise

that is required to be added to the output of a query that each user

can change by at most one. In this paper, we use this binomial noise

technique to achieve differential privacy.

Discrete-log zero-knowledge proofs. PSC uses a few types of zero-

knowledge proofs demonstrating knowledge of and relationships

among the discrete logarithms of certain values. The values are

elements in some group G of order q, and the discrete logs are

with respect to some generator д (e.g. x is the discrete log of y =
дx , x ∈ Zq ). In general, a zero-knowledge proof system [25] is a

protocol between a prover P and verifierV in which the prover

demonstrates the truth of some statement without revealing more

than that truth, where the statement may be, for example, the

existence or knowledge of a witness to membership in a language.

Sigma protocols exist for the discrete-log statements PSC proves in

zero-knowledge, where sigma protocols are three-phase interactive

protocols starting with a commitment by the prover, followed by a

random challenge from the verifier, and ended by a response from

the prover. Such protocols can be made non-interactive via the

the Fiat-Shamir heuristic [21], in which the random challenge is

generated by the prover by applying a cryptographic hash to the

commitment, and which is secure in the random-oracle model.

Verifiable shuffles. PSCmakes use of verifiable shuffles [41]. Infor-

mally, a verifiable re-encryption shuffle takes as input ciphertexts,

outputs a permutation of a re-encryption of those ciphertexts, and

proves that the output is a re-encryption and permutation of the

input. There are two security requirements for verifiable shuffles:

privacy and verifiability. Privacy requires an honest shuffle to pro-

tect its secret permutation. Verifiability requires that any attempt

by a malicious shuffle to produce an incorrect output must be de-

tectable. Several protocols for verifiable shuffling have been pro-

posed [2, 23, 27, 40]. As with the discrete-log proofs, the verifiable

shuffles with interactive proofs can be made non-interactive using

the Fiat-Shamir heuristic.

Secure broadcast. PSC uses a secure broadcast communication

functionality. The security property that we require is broadcast

with abort [26], which is slightly weaker than Byzantine agreement.

This property guarantees that there exists some consensus output

x such that each honest party that terminates either outputs x or

aborts. Note that some honest parties may output x while others

may abort. Broadcast with abort can be achieved given a PKI with

the two-round echo-broadcast protocol. In this protocol, the sender

sends a signedmessage to all the receivers, and each receiver append

its own signature and sends it to all other receivers. If a party

received the same message in every case and with valid signatures,

it accepts that message, and otherwise it aborts.

3 OVERVIEW
PSC enables the secure computation of the cardinality of the union

of itemsets that are distributed among a set of Data Parties (DPs).

The protocol has two phases:

During the data collection phase, the DPs record observations in

a vector of encrypted counters. These observations correspond to

the metric of interest — for example, the unique clients observed by

guard (entrance) relays in an anonymity network, or the unique exit

points observed by the network’s egress points. As explained below,



the counters are maintained in an oblivious manner, meaning that

their plaintext cannot be revealed, even by the DPs that maintain

them.

After the data has been collected, the aggregation phase proceeds

as a series of cryptographic operations that, in toto, produces the

cardinality of the union of the DPs’ observations.

For clarity, the operation of these two phases is summarized

below. The full details are found in Section 4.

Participants and threat model. The participants in the system

are the d DPs andm Computation Parties (CPs). The latter are dedi-

cated servers that apply verifiable shuffles and other cryptographic

techniques to enable PSC.

Informally, our privacy guarantees are that (i) no information

from an honest DP is ever exposed and (ii) the adversary cannot

identify any individual data from the aggregated result (i.e. the

cardinality). Formal security definitions and guarantees are pro-

vided in Section 5. Our protocol is secure as long as there is at least

one honest CP. That is, we tolerate malicious DPs and CPs so long

as at least one CP correctly obeys the protocol and the malicious

CPs are selected statically. We prove our protocol secure in the UC

framework, ensuring that PSC can be safely composed with other

UC protocols.

Our protocol is not robust against dishonest DPs that report

invalid statistics or dishonest CPs that choose to insert specific

elements into the counted itemset. That is, like PrivEx [19] and

PrivCount [30], PSC does not provide integrity guarantees that

limit the influence of invalid data supplied by the malicious parties.

We also note that a malicious CP can disrupt the protocol. We do

not attempt to prevent malicious nodes from causing the protocol

to abort.

Data collectionphase and encrypted counters. EachDPmain-

tains its dataset as a vector of encrypted counters. We assume a

mapping between possible values in the DPs’ itemsets and some

finite range of integers. This mapping may be trivially realized

by hashing the itemsets’ values. More concretely, letH be a hash

function that maps itemset values to integers in the range [0,b − 1].
Conceptually, each DP stores a b-bit encrypted bit vector, where

an encrypted 1 indicates that the DP has the corresponding item in

its itemset.

An important property of our system — and one that is shared

in existing work on privacy-preserving measurement systems [19,

30, 36] — is that the counters be stored obliviously. That is, after

an initialization step, the DPs discard the keys used to encrypt

the counters. They do, however, have the ability to transform any

element in their encrypted counter to an (encrypted) 1, regardless
of its previous (and unknowable) value. This construction allows

the DPs to update the counters (e.g., to log the observation of a

new client IP address) while maintaining resistance to compulsion

attacks. That is, even under pressure to do so (e.g. in the form of

a subpoena), DPs cannot release the plaintext of their encrypted

counters.

Aggregation phase. During the aggregation phase, the DPs

forward their encrypted counters to the CPs, which in turn perform

a series of steps to securely compute the cardinality of the union.

In more detail, the aggregation phase proceeds as follows:

(1) Counter forwarding: Each DP creates secret shares of its

encrypted counters and sends those shares to each of the

CPs.

(2) Noise addition: Upon receiving the shares, the CPs collab-

oratively compute encrypted counters by homomorphically

adding encrypted shares. The CPs then collaboratively gen-

erate n encrypted noise counters according to Eq. 2 and add

the noise to their list of counters.

(3) Counter shuffling: The CPs next perform a collaborative

verifiable shuffle, which mixes the noise and non-noise coun-

ters and obscures the mapping between a position in the

vector and a particular itemset value.

(4) Counter re-randomization: To unlink the output counter

values from the input values, each CP successively

re-randomizes the values of the (shuffled) encrypted coun-

ters. This prevents a malicious DP from recognizing any

output counter by “marking” it with a specific input value.

(5) Counter decryption: After the counters have been

re-randomized, each CP removes its layer of encryption,

eventually exposing the plaintext (but shuffled) counters.

(6) Aggregation: Finally, the CPs forward the shuffled counters

to a single CP, which then computes the sum (i.e. counts the

1s in the vectors) and reports the result.

This process is summarized in Figure 1 and described more fully

next.

4 PROTOCOL DETAILS
4.1 Preliminaries
PSC makes use of several cryptographic tools. A primary tool is

ElGamal encryption [20], and PSC takes advantage of several ca-

pabilities of ElGamal, including distributed key generation and

decryption, re-encryption, plaintext randomization, and multiplica-

tive homomorphism. Let G be a Diffie-Hellman group for use by

the ElGamal cryptosystem. Let q be the order of G, and let д be a

generator ofG . Let x
R

← S denote a uniform random sample x from

set S . In ElGamal, a keypair (x ,y) is generated by choosing a private

key x
R

← Zq and setting the public key toy = дx . A messagem ∈ G ,

r is encrypted by choosing r
R

← Zq and producing the ciphertext

(c1, c2) = (д
r ,yrm). A ciphertext (c1, c2) is decrypted asm = c2/c

x
1
.

A ciphertext (c1, c2) is re-encrypted by choosing randomization pa-

rameter r
R

← Zq and producing (дr c1,y
r c2), which is an encryption

of the same plaintext. A ciphertext is re-randomized by choosing a

randomization parameter r
R

← Z∗q and producing (cr
1
, cr
2
), which, if

the original encrypted value is x , д0, makes the value uniformly

random in G\{д0}, and otherwise doesn’t change it.

We assume that PSC has access to two secure communication

primitives as ideal functionalities (see details in Appendix A). The

first is a secure point-to-point communication functionality FSC
that delivers messages from one party to another with confiden-

tiality and authenticity. Such functionality can be realized using

standard assumptions, even in the Universally Composable (UC)

framework [6]. The second is a secure broadcast-with-abort func-

tionality FBC that guarantees that the same message is delivered

to all honest parties that don’t abort. Goldwasser and Lindell [26]
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Figure 1: A simplification of the major steps of the private set-union cardinality protocol. Random shares of the encrypted
counters are first forwarded from the DPs to the CPs (a). The CPs then add noise (b) and verifiably shuffle the counters (c). The
encrypted counters are re-randomized to prevent linkability (d), and then decrypted (e) and finally aggregated (f) to yield the
final output.

show how such a functionality can be implemented, including in

the UC model. Details can be found in Appendix A.5.

We also provide PSC with the following functionalities for zero-

knowledge proofs of knowledge, which output 1 if the inputs verify

and output 0 otherwise (details in Appendix A):

(1) Discrete log (FZKP-DL): For input (д,y) from the verifier, the

prover inputs x such that дx = y. This is defined in more

detail in Appendix A.3.

(2) Discrete-log equality (FZKP-DLE): For input (д1,y1,д2,y2)
from the verifier, the prover inputs x such thatдx

1
= y1∧д

x
2
=

y2. This is defined in more detail in Appendix A.4.

(3) ElGamal re-encryption and re-randomization (FZKP-RR): For

input from the verifier of generator д, public key y, input
ciphertext (c1, c2), and output ciphertext (d1,d2), the prover
inputs re-encryption parameter r1 and re-randomization pa-

rameter r2 such that ((c1д
r1 )r2 , (c2y

r1 )r2 ) = (d1,d2). This is
defined in more detail in Appendix A.1.

(4) ElGamal shuffle (FZKP-S): For an input from the verifier

of shuffle inputs ((c1
1
, c1
2
), . . . , (ck

1
, ck
2
)) and shuffle outputs

((d1
1
,d1

2
), . . . , (dk

1
,dk

2
)), the prover inputs permutation π and

re-encryption parameters (r1, . . . , rk ) such that

(ci
1
дri , ci

2
yri ) =

(
d
π (i)
1
,d

π (i)
2

)
. This is defined in more detail

in Appendix A.2

The Schnorr proof [44] provides an efficient sigma protocol for

FZKP-DL, and the Chaum-Pedersen protocol [9] provides efficient

sigma protocols for FZKP-DLE and FZKP-RR. Hazay and Nissim [28]

describe how to compile these (and sigma protocols in general) into

efficient protocols secure in the UC model. Several zero-knowledge

proofs of ElGamal shuffles of increasing efficiency have been pre-

sented [2, 23, 27, 40] (some require an honest verifier and must be

strengthened for the malicious setting [24]). Wikström [51] shows

how to obtain universally-composable proofs of correct shuffling.

4.2 Initialization and Data Collection
Each Data Party DPi stores a hash table T i with b bins. Each bin

is a value in Zq . Let H be the hash function used and assume

that it can be modeled as a random function. If we expect at most

e inputs and desire that less than a fraction f of the inputs are

expected to experience a collision, then we set b = e/f to obtain

the desired accuracy. To initialize each bin T ik , DPi chooses values

r
i j
k

R

← Zq , 1 ≤ j ≤ m, sets T ik = −
∑
j r

i j
k , uses FSC to send each r

i j
k

to Computation Party CPj , and then removes the r
i j
k from memory.

We can view this process as secret sharing a stored value of Sik =

T ik +
∑
j r

i j
k among DPi and the CPs, where Sik has an initial value

of zero.

During data collection, a Data Party DPi observes items and

enters them into its hash table. To do so for a given item x , DPi

chooses r
R

← Zq and updates bin k = H(x) as T ik ← T ik + r . This

makes the secret-shared value Sik random. Such a value is non-zero

with overwhelming probability (in q), and so, by interpreting a

non-zero Sik to indicate an observed item, this process records the

observation of item x , and Si contains the set of such observations.

We note that secret sharing the bins prevents the DP from storing

any sensitive local state — an adversary that gains access to a DP’s

state would just see a uniformly and independently random value

in each bin.

At the end of data collection, DPi transfers its hash table to the

CPs through additional secret sharing. That is, DPi chooses values

s
i j
k

R

← Zq , 1 ≤ j ≤ m − 1, 1 ≤ k ≤ b, sets simk = T ik −
∑m−1
j=1 s

i j
k , and

sends each s
i j
k to CPj through FSC.

4.3 Aggregating Inputs
The CPs begin the secure computation process by generating El-

Gamal encryption keys. CPj chooses private key x j
R

← Zq and

broadcasts public key yj = дx j . This broadcast and all later ones

are performed using FBC, and if this broadcast or any later one

aborts, CPj aborts. CPj uses FZKP-DL as the prover with each CPi
as the verifier on yj to prove knowledge of x j . A group public key

is computed as y =
∏

j yj .
The CPs aggregate the hash tables by adding together each share

they have received for a given bin. That is, CPj computes an aggre-

gate table Aj
where the kth bin contains A

j
k =

∑d
i=1 r

i j
k + s

i j
k . Thus

each A
j
k is a share of a value Ak =

∑
j A

j
k that is random if any

DP observed an item x such thatH(x) = k and is zero otherwise.

Therefore, under the interpretation that a non-zero value indicates

the presence of an item in the table, Ak represents whether or not



some DP recorded an observation in bin k (except with negligible

probability in q), and A contains the union of the sets Si produced
during data collection.

The CPs then prepare these aggregates for input into an ElGamal

shuffle. CPj encodes the kth value as дA
j
k and encrypts it using

public key y to produce ciphertext c
j
k = (д

r ,yrдA
j
k ), r

R

← Zq .

We place A
j
k in the exponent to turn the ElGamal multiplicative

homomorphism into an additive operation on the A
j
k values, and

no discrete-log operation is needed later to recover the desired

plaintext values because we will only need to distinguish zero and

non-zero exponent values.

CPj then broadcasts c
j
k and computes encrypted shuffle inputs

ck =
∏

j c
j
k . Due to the ElGamal homomorphism, ck is an encryp-

tion of дAk , and thus the values ck represent an encryption of the

union of sets observed at the DPs. CPj uses FZKP-DL as the prover

with each CPi as the verifier on the first component of c
j
k (i.e. c

j
k1) to

prove knowledge of r such that дr = c
j
k1, which implies knowledge

of the encrypted value дA
j
k . If any proof fails to verify at CPi (i.e.

FZKP-DL outputs 0 to CPi ), then CPi aborts. A verifier also aborts

on the failed verification of any future proof, and so we will not

explicitly state this again.

4.4 Noise Generation
The CPs collectively and securely generate noise inputs to provide

differential privacy to the output. As discussed in Section 2, (ϵ,δ )-
differential privacy can be provided to counting queries by sampling

n bits uniformly at random, where n is the smallest value satisfying

Inequality 2. The CPs generate such bits using verifiable ElGamal

shuffles so that the resulting values are encrypted and can later be

shuffled along with the encrypted inputs ck .
The CPs run in paralleln ElGamal shuffle sequences, one for each

noise bit. Each shuffle sequence has two input ciphertexts, c0
0
=

(д0,y0д0) and c0
1
= (д0,y0д1), representing 0 and 1, respectively.

Note that the encryption randomness is actually fixed at 0 so all

CPs know that the inputs are correctly formed. Let c0 =
(
c0
0
, c0
1

)
.

Then each CPi , in sequence from i = 1 tom, performs the following

actions:

(1) Re-encrypt ci−1
0

as c ′
0
and ci−1

1
as c ′

1
.

(2) Choose β
R

← {0, 1}, permute the re-encryptions as ci =
(c ′β , c

′
1−β ), and broadcast ci .

(3) Use FZKP-S as the prover with each other CPj in parallel on

shuffle input ci−1 and output ci to prove that the shuffle was

performed correctly.

From the final output cm of the jth parallel noise shuffle we take

the first element cm
0

to be the jth noise bit, which we denote cb+j .

4.5 Shuffling, Re-randomization, and
Decryption

At this point, we have producedv = b+n values encoded as ElGamal

ciphertexts ck , where the first b contain the aggregated bins and

the last n contain the noise. To hide the values of specific bins and

noise bits, we have the CPs shuffle these values before decryption.

Let c1,0 = (c1, . . . , cv ). To shuffle c1,0, each CPi , in sequence from

i = 1 tom, performs the following actions:

(1) Re-encrypt each ciphertext in c1,i−1 to produce c ′.
(2) Choose a random permutation π , permute c ′ as

c1,i =
(
c ′π (1), . . . , c

′
π (v)

)
, and broadcast c1,i .

(3) With each other CPj in parallel, use FZKP-S as the prover

on c1,i−1 and c1,i to prove that the shuffle was performed

correctly.

Next, we re-encrypt and then re-randomize the plaintexts of

c1,m . The re-randomization ensures that the encrypted values are

each either д0 or uniformly random inG\{д0} and thus reveal only
one bit of information . To accomplish this, let c2,0 = c1,m , and

then each CPi , in sequence from i = 1 tom, performs the following

actions:

(1) Re-encrypt each ciphertext in c2,i−1 to produce c ′, re-randomize

each ciphertext in c ′ to produce c2,i , and broadcast c2,i .
(2) With each other CPj in parallel, use FZKP-RR as the prover on

c2,i−1k and c2,ik , for 1 ≤ k ≤ v , to prove that the e-encryption
and re-randomization was performed correctly. Each CPj

also verifies that, for all k , the ciphertext (c1, c2) = c2,ik is

such that c1 , д
0
and aborts if not. This check ensures that

the re-randomization parameter was non-zero.

Finally, we have the CPs decrypt the result. Let c3,0 = c2,m . Each

CPi , in sequence from i = 1 tom, performs the following actions:

(1) Decrypt each ciphertext in c3,i−1 using key xi to produce

c3,i .
(2) For each 1 ≤ k ≤ v , let (c1, c2) = c3,i−1k and (c3, c4) = c3,ik ,

and, with each other CPj in parallel, use FZKP-DLE as the

prover on (д,yi , c1, c2/c4). Each CPj also verifies that c3 = c1
and aborts if not. These steps prove that the decryption was

performed correctly.

Let pi be the second component of c3,mi , which is a plaintext value,

and let bi be 0 if pi = д
0
and be 1 otherwise. Each CP produces the

output value z =
∑v
i=1 bi − n/2, where the −n/2 term corrects for

the expected amount of added noise.

4.6 Optimizations
We have given the PSC protocol in a way that is clear and amenable

to proving security. There are a number of practical optimizations

that can be made to it. These include the following:

• During initialization, instead of having the DPs send b ran-

dom values to the CPs, the DPs can just send a short random

seed, and then both sets of parties can expand it using a

pseudorandom generator.

• Re-encryption, re-randomization, and decryption operations

can be combined, which eliminates the added rounds and

messages in the final sequential decryption. This requires a

zero-knowledge proof for these combined operations.

• The zero-knowledge proofs can be made non-interactive via

the Fiat-Shamir heuristic [21].

• The noise generation phase doesn’t depend on any inputs

from the DPs and thus can be done in advance, for example

while the DPs are collecting data.



5 SECURITY ANALYSIS
PSC is designed to compute set union across the DPs while main-

taining strong provable security and privacy properties. As we will

show, PSC is secure against an active adversary that controls all

but one of the CPs. Moreover, PSC provides forward privacy, that is,

an adversary that corrupts a DP at some point during data collec-

tion learns nothing about what was observed in the past. Finally,

the output is differentially private, which helps hide the existence

of any specific item in the set union while providing an accurate

estimate of the set-union size.

5.1 Protocol Security
We prove PSC secure in the Universally Composable framework [6].

This provides a strong notion of security and allows PSC to serve as

a component of a larger system without losing its security proper-

ties. Our proof is in a “hybrid” model that assumes the existence of

the functionalities used in the protocol description (see Section 4).

Each functionality can be instantiated using any protocol that can

be proven to UC-emulate the functionality. The PSC security proof

in the UC model also directly implies its security in weaker models,

such as the standalone model, and thus in order to improve effi-

ciency in implementation we can accept a weaker security model

and instantiate a functionality needed by PSC using a protocol that

can only be proven in the weaker model (e.g. using the Neff shuffle

for FZKP-S). See Section 4.1 for a description of possible protocols

to implement the functionalities used by PSC and their provable

security properties.

An ideal functionality FPSC for PSC is given in Figure 2. Note

that, in addition to the CPs and DPs, the functionality interacts with

an adversary A. We will show that PSC UC-emulates FPSC against

adaptive DP corruptions and static CP corruptions as long as one

CP is honest. Security against adaptive corruptions is often diffi-

cult to prove with efficient protocols. However, we need adaptive

security to express that nothing can be learned about past inputs

by corrupting a DP, and so we allow adaptive corruptions against

the DPs only.

Because PSC UC-emulates FPSC, it inherits the security proper-

ties that are satisfied by the functionality. FPSC clearly produces

the noisy set-union cardinality output, although it includes the

limitations that the adversary can prevent any output at all and

that the adversary is able to include arbitrary entries in the set even

if he only controls a CP. The latter limitation is minimal, as the

function to be computed already allows a corrupt DP to provide an

input containing whatever the adversary wants. We can see that the

functionality provides input privacy in that an adversary doesn’t

learn anything other than the inputs and outputs of the corrupted

parties. We can also observe that the functionality provides forward

privacy for the DPs, as a DP does not reveal anything about its past

inputs upon corruption. Finally, the adversary does have the power

to cause honest parties to abort at will, even potentially resulting in

some honest parties aborting and others terminating successfully.

We prove that PSC UC-emulates FPSC in a hybrid model using

the following functionalities: FSC, FBC, FZKP-DL, FZKP-DLE, FZKP-RR,

FZKP-S. See Section 4.1 for details on these functionalities. LetM

be the hybrid model including these functionalities. The security

claim for PSC is given in Theorem 5.1.

(1) Wait until (CORRUPT-CP,C) is received from A. For
each i ∈ C , add CPi to the list of corrupted parties.

(2) Upon receiving (CORRUPT-DP, i) from A, add DPi to

the list of corrupted parties. Note that past inputs to

DPi are not revealed to A upon corruption.

(3) Set vi ← 0
b

for each DPi . Upon receiving

(INCREMENT,k) from DPi , set v
i
k ← 1.

(4) Upon receiving GO from DPi , ignore further messages

from DPi , and send (GO,DPi ) to A.
(5) Upon receiving GO from CPi , ignore further messages

from CPi , and send (GO,CPi ) to A.
(6) Set vA ← 0

b
. Upon receiving (INCREMENT,k) from

A, if any CP or DP is corrupted, set vAk ← 1.

(7) Sample the noise value as N ∼ Bin(n, 1/2), where
Bin(n,p) is the binomial distribution with n trials and

success probability p.

(8) Let wi = max

(
v1i , . . . ,v

d
i ,v

A
i

)
, 1 ≤ i ≤ b. Compute

output z ←
∑b
i=1wi + N . Once GO has been received

from each CP, output z to CPm .

(9) If at any point FPSC receives (ABORT, IDS) fromA, send
ABORT to all parties indicated by IDS and do not send

additional outputs besides other ABORT commands as

directed by A.

Figure 2: FPSC: the ideal functionality for PSC

Theorem 5.1. The PSC protocol UC-emulates FPSC in the M-

hybrid model with respect to an adversary that adaptively corrupts

the DPs and statically corrupts at mostm − 1 CPs.

Proof. We leave the proof to Appendix B.2. □

5.2 Protocol Privacy
PSC ensures that only the desired output is learned by an adversary,

and it guarantees that the output doesn’t itself violate privacy by

making the output (ϵ,δ )-differentially private. The privacy notion

is applied per-item; that is, the differential-privacy guarantee (see

Equation 1) applies to two input sets that differ only in the existence

of a single item. Thus the adversary cannot conclude whether or

not a single item was observed by some DP. The extent to which

the adversary can be made to suspect an item was observed is

determined by the privacy parameters ϵ and δ . PSC can easily be

configured to provide privacy for any small number k of items by

reducing the ϵ and δ by a factor of k .

6 IMPLEMENTATION AND EVALUATION
We constructed an implementation of PSC in Go to verify our pro-

tocol’s correctness and to measure the system’s computation and

communication overheads. We run experiments over large syn-

thetic datasets and measure our implementation’s performance.

We describe the implementation details and design choices in Sec-

tion 6.1 and then present our performance evaluation in Section 6.2.



6.1 Implementation
We built an implementation of PSC in 1427 lines of Go using the

DeDiS Advanced Crypto Library for Go package
1
. ElGamal encryp-

tion is implemented in the NIST P-256 elliptic curve group [43]

and the CPs use Neff’s verifiable shuffle [40] to shuffle the ElGamal

ciphertexts.

The CPs perform secure broadcast using the two-round echo-

broadcast protocol (see Section 2). They use the Schnorr signature

algorithm [44] over the NIST P-256 elliptic curve for signing and

SHA-256 for computing digests. We rely on TLS 1.2 to provide

secure point-to-point communication.

We use “Biffle” in the DeDiS Advanced Crypto Library for shuf-

fling the noise vectors during the noise generation phase. Biffle

is a fast binary shuffle for two ciphertexts based on generic zero-

knowledge proofs.

For zero-knowledge proofs, we use Schnorr proofs [44] for knowl-

edge of discrete log of the Elgamal public key and blinding factors,

the Chaum-Pedersen proof [9] for equality of discrete log of de-

crypted Elgamal ciphertexts and public key, and the generalization

of the Chaum-Pedersen proof [40] for the ElGamal ciphertext re-

encryption and re-randomization. Non-interactive versions of all

these proofs are produced using the Fiat-Shamir heuristic [21].

A single DP program emulates all the DPs in our implementation.

However, in a real deployment, the DPs would be distributed.

To encourage the use of PSC by privacy researchers and practi-

tioners, we are releasing PSC as free, open-source software, avail-

able for download at http://safecounting.com/.

6.2 Evaluation
Experiments are carried out on 8 to 32 core AMDOpteron machines

with 32GB to 528GB of RAM running Linux kernel 3.10.0. Our

implementation of PSC is currently single-threaded. Although the

computational cost of PSC’s noise generation is significant and may

be done by the CPs before the inputs are received, we parallelize

it so that it can be done on multicore machines after inputs are

received . We use “parallel for” from the golang par package
2
for

this parallel noise shuffling.

We instantiate all CPs and DPs on our 8 to 32 core servers. Google

Protocol Buffers [50] is used for serializing messages, which are

communicated over TLS connections between PSC’s parties. We

use Go’s default crypto/tls package to implement TLS.

Query and dataset. We evaluate PSC by considering the query:

what is the number of unique IP connections as observed by the

nodes in an anonymity network? Rather than store 2
32

(or, for IPv6,

2
128

) counters, we assume b counters (where b ≪ 2
32
) and map IP

addresses to a (lgb)-bit digest by considering the first lgb bits of a

hash function; this results in some loss of accuracy due to collisions.

For each experiment, we chose an integer uniformly at random

from the range [0, 20000]. Then for each DP, we choose from its

counters a random subset of that size to set to 1; the remaining

counters are set to 0.
We note that the performance of PSC is independent of the

number of unique IPs. Therefore, in our performance evaluation,

1
http://github.com/dedis/crypto

2
https://github.com/danieldk/par

Table 1: Default values for system parameters.

Parameter Description Default

b number of counters 200,000

m number of Computation Parties 5

d number of Data Parties 20

ϵ privacy parameter 0.3

δ privacy parameter 10
−12

we are interested in how the number of counters b affects the

operation of PSC, rather than the number of unique IPs.

Experimental setup. The default values for the number of bins b,
the number of CPsm, the number of DPs d , ϵ , and δ are listed in

Table 1.

We determine these default values by considering which val-

ues would be appropriate for an anonymity network such as Tor.

Currently, Tor reports 2 million user connections
3
and over 2, 000

guard nodes
4
. Assuming that 1% of Tor guards deploy PSC, we have

d = 20. Also, given this level of PSC deployment, we would expect

a Tor guard to see approximately 20, 000 unique IPs.

To measure the aggregate with high accuracy, we limit hash-

table collisions to at most a fraction f of inputs in expectation by

using a hash table of size 1/f times the number of inputs. Therefore,

for f = 10%, we set (unless otherwise specified) b = 200, 000 in all

our experiments. We set ϵ = 0.3 as this is currently recommended

for safe measurements in anonymity networks such as Tor [30].

To limit to 10
−6

the chance of a privacy “failure” affecting any of

10
6
users, we set δ to 10

−12
[17]. We set these default values as

system-wide parameters, unless otherwise indicated.

Accuracy. The trade-off between accuracy and privacy is gov-

erned by the choice of ϵ and δ . We vary ϵ from 0.2 to 0.6, keeping

the number of bins at b = 200, 000. We found that values below

0.2 produced too much noise and offered low utility. Values of ϵ
greater than 0.6 would not provide a reasonable level of privacy.

The actual and the noisy aggregate values along with the stan-

dard deviation for the noisy aggregates (the noise follows a bino-

mial distribution) for different values of ϵ is shown in Table 2. We

observe that the standard deviation of the noisy value is at most

106.44. Therefore, the noisy aggregates are very close to the actual

aggregates, as expected. In summary, PSC gives highly accurate

results for the desired privacy level.

Communication cost. PSC incurs communication overhead by

transmitting symmetric-key-encrypted counters between the DPs

and CPs and the ElGamal encrypted counters among the CPs. To

be practical, a statistics gathering system should impose a low com-

munication overhead for the DPs, which can have limited available

bandwidth. However, we envision the CPs to be well-resourced

dedicated servers that can sustain at least moderate communication

costs.

We explore PSC’s communication costs by varying the number

of bins b, the number of CPsm, the number of DPs d , and ϵ . The

3
Tor uses simple statistical techniques to roughly estimate the number of users using

the network. A major motivation of our work is to provide a more robust and accurate

method of determining the size of Tor’s user base.

4
See https://metrics.torproject.org/.

http://safecounting.com/
http://github.com/dedis/crypto
https://github.com/danieldk/par
https://metrics.torproject.org/
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Figure 3: The communication cost incurred by the CPs and DPs varying the number of bins (left), the number of CPs (center)
and the number of DPs (right).
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Figure 4: The communication cost incurred by
the CPs varying ϵ .

Table 2: Actual, noisy aggregates, and standard deviation for
various values of ϵ .

Epsilon Actual
Aggregate

Noisy
Aggregate

Standard
Deviation

0.2 4054 3989 106.44

0.3 4054 4028 70.96

0.4 4054 4051 53.22

0.5 4054 4027 42.58

0.6 4054 4129 35.48

average communication costs for the CPs and DPs are plotted in

Figure 3 and Figure 4. We omit error bars as the variance in the

communication cost incurred among the CPs was negligible; the

same is true for the variance in communication cost among the

DPs.

We first consider how the number of bins influences communi-

cation cost. We run PSC, varying b from 100,000 to 500,000, and

plot the results in Figure 3. The values of the bins (i.e. 0 or 1) do
not affect the communication cost of the DPs, as a DP transmits an

encrypted value for either 0 or 1. For up to 200,000 bins, the com-

munication cost for each DP is fairly modest. For example, if PSC

is run once an hour, then the communication cost is approximately

60 MB/hr (16.67 KBps).

The communication costs are more significant for the CPs, which

we envision are dedicated machines for PSC. With 200,000 bins,

each CP requires a bandwidth of 954.20 MB for sending and 1.11 GB

for receiving (approximately 300 KBps if executed once per hour).

We next consider howm, the number of CPs, affects the commu-

nication cost. We varym from 3 to 7 and plot the results in Figure 3.

The communication cost for the DPs increases at a much slower

pace than that for the CPs. Even up to 7 CPs, the communication

cost for each DP is fairly modest — approximately 60 MB (or 16.67

KBps, if run every hour).

The communication costs increase at a much faster pace for the

CPs as each CP broadcasts proofs and ciphertexts to the other CPs.

Therefore, for up to 5 CPs, each CP requires a modest bandwidth

of 954.20 MB for sending and 1.11 GB for receiving (if run hourly,

approximately 308 KBps).

We rerun PSC with different numbers of DPs. Figure 3 shows

that varying the number of DPs has little effect on the average

communication costs for the DPs and the CPs. This is because

the number of encrypted counters transmitted by the DPs and the

number of ElGamal encrypted counters transmitted by the CPs

remain the same across these experiments.
5

Lastly, we run PSC with different values of ϵ to determine how

the choice of privacy parameter affects the communication costs.

Figure 4 shows that the average communication costs for the CPs

decrease when ϵ is increased. The communication costs for the CPs

are reasonable even for a low value of ϵ = 0.2. On average, each

CP requires a bandwidth of at most 1.13 GB for sending and 1.29

GB for receiving (358 Kbps, if performed once an hour).

In summary, we find that PSC incurs reasonable communication

overhead: the costs to DPs are modest, and, while slightly higher

for CPs, they remain practical.

Overall runtime and computation cost. To understand the com-

putation costs of PSC, we perform a series of microbenchmarks.

We focus on evaluation of the CPs, as the DPs simply increment

a counter whenever they observe a client connection. That is, the

computation overhead of a DP is negligible.

5
Currently, in our implementation, for all the above communication experiments, the

DPs send the symmetric key share for each counter to every CP. We note that as a

future optimization, this can be reduced to a great extent by using a Pseudo Random

Function (PRF) and just sending a key per CP. The CPs can then use the PRF to generate

the key-shares for every counter. We expect that this will reduce the communication

cost of the DPs to half of the observed value.
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Figure 5: The average execution time as a function of the number of bins (left)
and the number of CPs (right). The dashed-lines show the range within 1.5xIQR
from the lower and upper quartiles.
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Figure 6: The computation cost incurred
by theCPs for different operations, vary-
ing the number of bins.

We observe that the time taken for each operation of the CPs

(including public key generation, parallel noise generation, El-

Gamal encryption, verifiable shuffling, re-randomization and re-

encryption, and decryption) takes less than 3% of the total time

taken in a run of the protocol. This is because the time required

to transfer messages via secure broadcast overwhelms the time

required for computation.

Figure 5 shows the overall running time (including the time

required for network communication) as a function of the number

of bins b and the number of CPsm. We first consider how number

of bins b affects the computation cost (note that more data must

be communicated via secure broadcast as b increases). The overall

runtime is moderate. It takes approximately 1 hr 6 min for an

experiment with 62,500 bins.

We next consider how the number of CPsm affects the computa-

tion cost. The computation cost increases with the CPs at a slower

pace than with the bins. Even up to 6 CPs, the average computation

cost for each CP is fairly modest — approximately 4 hr 9 min.

Still, to better understand the computational overhead of PSC,

we measure the computation time as we vary the number of bins

b. Figure 6 shows the distribution of processing overheads for the

CPs for different operations, which account for less than 3% of the

total execution time.

7 RELATEDWORK
Privacy-preserving measurements. The operators of distributed

systems have a critical need to understand how their systems are

being used. The most straightforward measurement technique is

to directly log and analyze the metric of interest. In the context of

privacy-preserving systems, such as anonymity networks, this ap-

proach can be problematic, and attempts that directly measure user

behavior in anonymity networks [37] have been heavily criticized.

In particular, Soghoian [46] has called for improved community

standards for research on anonymity networks. Loesing et al. [35]

reiterate this need and propose privacy-preserving techniques for

identifying trends in Tor. The techniques they describe for unique

counting are to aggregate and round unique observations made at

each relay. These techniques are not as safe as PSC, in that they only

perform aggregate over time and not across relays, they require

intermediate observations to be stored in memory, and they do not

satisfy any rigorous privacy definition. Some of these techniques

are also heuristic, as they indirectly observe client activity (e.g. di-

rectory downloads) and must guess how much activity corresponds

to a unique user.

Recently, several measurement techniques have been proposed

for Tor that use differential privacy to protect user privacy. Here, the

goal is to produce useful aggregate statistics about the anonymity

network, while providing quantifiable privacy guarantees. Elahi

et al. [19] introduce secret-sharing and distributed-encryption vari-

ants of PrivEx, a system for private traffic statistics collection for

anonymity networks. The PrivCount system, which serves as the in-

spiration of our work, extends PrivEx for collection of Tor statistics

information, and introduces optimal allocation techniques for the

ϵ privacy budget. Finally, Historϵ [36], like PrivEx and PrivCount,

use differential privacy to securely measure characteristics of the

Tor network. Historϵ adds integrity protections by bounding the

influence of malicious data collectors (or, in our terminology, DPs).

These systems can aggregate counts across nodes, but they cannot

compute unique counts, which is the functionality provided by PSC.

Related cryptographic protocols. Brandt suggests a protocol [5]

very similar to the aggregate-shuffle-rerandomize-decrypt scheme

our CPs execute. However, our construction differs in a few crucial

parts: we need to include separate DP parties to provide the input

that must be adaptively secure and limit as much as possible their

computational work, and in our protocol the parties jointly generate

noise to satisfy a differential privacy guarantee. Beyond these modi-

fications, the bulk of our contribution is a thorough proof of security

of the protocol in the UC model (to make the proof go through, we

needed to add re-encryption during the re-randomization phase),

a specific application for the general theoretical protocol (mak-

ing measurements in privacy-preserving systems like Tor), and

a functional implementation of the protocol alongside empirical

data measuring computation and communication costs gathered

through experiments.

Several protocols to securely compute set-union cardinality (or

the related problem of set-intersection cardinality) have been pro-

posed [12, 18, 32, 48]. However, none of these provides all of the

security properties that we desire for distributed measurement in a

highly-adversarial setting: malicious security against a dishonest

majority, forward privacy, and differentially-private output. Similar



protocols have been designed to securely compute set union [22, 28],

but these protocols output every member of the union and not just

its cardinality. General secure multiparty computation (MPC) pro-

tocols can realize any functionality including set-union cardinality,

even in the UC model [1, 7], and recent advances in efficient MPC

have been made in the multi-party, dishonest-majority setting that

we require [10, 33, 34]. However, such protocols make use of a

relatively expensive “offline” phase, while we intend to allow for

measurements that are run on a continuous basis. We also consider

a major advantage of PSC to be that it is conceptually straightfor-

ward and relies on a few well-understood tools.

Shuffles. The notion of a mixnet, which anonymizes a set of mes-

sages, was introduced by Chaum [8], and there are many schemes

for proofs of shuffles [2, 13, 23, 27, 40], which have been developed

as a fundamental primitive in privacy-preserving protocols. The

first shuffles to be proved secure in the UC model are given by

Wikström [51] and are designed to construct UC-secure mixnets.

Mixnets and shuffling schemes have found a variety of applica-

tions, particularly anonymous communication [8, 11, 39, 49] and

electronic voting [4, 29, 40].

8 CONCLUSION
Administrators of distributed systems have a critical need to under-

stand how their systems are being used. Often, instrumenting the

distributed system with measurement functionality and aggregat-

ing the result is a straightforward process. However, for systems in

which privacy is paramount, maintaining and aggregating statistics

is a far more complex task. Incorrect solutions can pose significant

risk to the system’s users.

This paper presents a protocol for private set-union cardinal-

ity (private set-union cardinality)—a zero-knowledge protocol for

counting the unique number of items known across the system’s

nodes that ensures that no party can learn anything other than

the cardinality. Our PSC protocol achieves private set-union car-

dinality using a combination of verifiable shuffles and differential

privacy techniques. We formally prove the security of PSC using

ideal functionalities under the UC framework.

We show that PSC can be practicality realized. Our implementa-

tion of PSC, which we release as free open-source software, demon-

strates the scalability of our techniques. Running our protocol on

200,000 counters across 20 DPs with 5 CPs consumes only approxi-

mately 60 MB at each DP and approximately 2 GB traffic at each

PSC-dedicated CP, making it practical for real-world deployments.

Importantly, PSC is a standalone protocol that is designed to be

run alongside any distributed system in which there is a need to

perform a private tabulation. As ongoing work, we are working

towards deploying PSC at Tor’s ingress points to discern the number

of unique clients that are accessing the anonymity network. We

envision that PSC is useful far beyond our own efforts, and could

be applied to count unique visitors across websites, determine the

number of users on a filesharing network (e.g., on a distributed

hash table), quantify the number of duplicate voter registration

records, among other uses.

Our implementation of PSC is available for download at http:

//safecounting.com/.
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A IDEAL FUNCTIONALITIES
For all ideal functionalities we assume the groupG and generator

д used throughout the protocol are publicly known. The Zero-

Knowledge proofs compiled from Σ-protocols are converted to

UC-secure ideal functionalities in the CRS model as described by

Hazay and Nissim[28].

A.1 ZKP of Re-encryption Re-randomization
Suppose we have a ciphertext pair (A,B) and we wish to present

(α , β) as a re-encryption re-randomization of it – that is,α = (Aдs )q ,
β = (Bys )q for some random shift value s and re-randomization

value q. Then A,B,α , β,д,y are known to both the prover and the

verifier. We describe the proof:

(1) The Prover P selects t1, t2 at random and sends T1 = At1дt2 ,
T2 = Bt1yt2

(2) The Verifier V sends a random challenge c to P .
(3) The Prover sends r1 = qc + t1, r2 = sqc + t2
(4) The Verifier accepts the proof iffAr1дr2 = αcT1 and B

r1yr2 =
βcT2

We claim the above proof is an HVZK proof that proves knowledge

of q, s such that the equations above for α , β hold.

Proof:

(1) Completeness. P generates t , s,q and learns c so it can gen-

erate r1,r2. We verify the two equations:

Ar1дr2 = Aqc+t1дr2 = Aqc+t1дsqc+t2 = AqcдsqcAt1дt2 = αcT1

Br1yr2 = Bqc+t1yr2 = Bqc+t1ysqc+t2 = BqcysqcBt1yt2 = βcT2

(2) Special Soundness. Suppose the prover provides two proofs
with the same commitment values t1, t2, with challenges c1
and c2. Then we have:

r1 = qc1 + t1 r ′
1
= qc2 + t1

r2 = sqc1 + t2 r ′
2
= sqc2 + t2

Then it is easy to see that q =
r1−r ′

1

c1−c2 and then s =
r2−r ′

2

q(c1−c2)
so

that special soundness is satisfied.

(3) Honest Verifier Zero Knowledge.We define a simulator

as follows: The simulator runs the prover as normal until it

receives c , then rewinds V , selects random r1, r2 and sets

T1 =
Ar1дr2

αc
T2 =

Br1yr2

βc

Since V is an honest verifier, it, given the same randomness,

provides the same challenge c and the equations required

for V to verify both hold and the simulation is successful.

FZKP−RR

(1) Upon receiving (PROVE, ( ®A, ®B), ( ®α , ®β), ®q, ®s, Pi , Pj ))

from Pi for ( ®A, ®B) and ( ®α , ®β) vectors of ciphertexts, ®s, ®q
vectors in Zp , set R to 1 if for every i ,

αi = (Aiд
si )qi βi = (BiY

si )qi

and set R = 0 otherwise.

(2) Send (RESULT, ( ®A, ®B), ( ®α , ®β), Pi , Pj ) to S, Pj .

Figure 7: FZKP−RR , the ideal functionality for a re-
encryption re-randomization ZKP
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A.2 ZKP of a Re-encryption shuffle
This is the idealization of our re-encryption shuffle ZKP. This func-

tionality has been realized in the UC model by Wikström [51],

specifically in Appendix F. We allow the functionality to take the

permutation explicitly as an input for convenience.

FZKP−S

(1) Upon receiving (PROVE, ( ®A, ®B), ( ®α , ®β), ®r ,π ,y, Pi , Pj )

from Pi for ciphertext vectors ( ®A, ®B), ( ®α , ®β), vector of
group elements ®r , public key y and π a permutation of

{1, ...,n}.
(2) Set R to 1 if, for each i , (απ (i), βπ (i)) is a re-encryption

of (Ai ,Bi ) under public key y using random element ri .
Set R to 0 otherwise.

(3) Send (RESULT , ( ®A, ®B), ( ®α , ®β),y, Pi , Pj ,R) to S, Pj .

Figure 8: FZKP−S , the ideal functionality for a re-encryption
shuffle ZKP

A.3 ZKP of Knowledge of Discrete Log
The prover wants to prove knowledge of x such that y = дx so

we use the Σ−protocol described by Schnorr [44]. We describe the

protocol and since it is standard we omit the proof:

(1) The Prover P selects t at random in G and sends T = дt

(2) The Verifier selects a random challenge c to P .
(3) The Prover sends s = t + cx
(4) The Verifier accepts the proof if and only if дs = Tyc

FZKP−DL

(1) Upon receiving (PROVE,x ,y, Pi , Pj ) for x ∈ Zp , y ∈ G,
set R to 1 if y = дx , 0 otherwise.

(2) Send (RESULT,y, Pi , Pj ,R) to S, Pj .

Figure 9: FZKP−DL , the ideal functionality for a zero knowl-
edge proof of knowledge of a discrete log

A.4 ZKP of Knowledge of Equality of Discrete
Logs

Suppose we have a ciphertext pair, (A,B). We want to present

(A′,B′) and a proof that there exists some r such that A′ = Ar ,
B′ = Br , or that logA A′ = logB B′ = r where r is known to the

prover. A Σ-protocol for this proof is described by Chaum and Ped-

ersen [9]. We describe the protocol and since it is standard we omit

the proof:

(1) The Prover P selects t at random and sendsT1 = At ,T2 = Bt

to V .

(2) The Verifier sends a random challenge c to P .

(3) The Prover sends s = rc + t to V
(4) The Verifier accepts the proof iff As = A′cT1 AND Bs =

B′cT2

FZKP−DLE

(1) Upon receiving (PROVE, ( ®A, ®B), ( ®α , ®β),x , Pi , Pj ) from

Pi , for ( ®α , ®β) a vector of ciphertext pairs and x ∈ Zp ,
set R to 1 if for every i , logβi αi = logBi Ai = x and set

R = 0 otherwise.

(2) Send (RESULT, ( ®A, ®B), ( ®α , ®β), Pi , Pj ,R) to S, Pj .

Figure 10: FZKP−DLE , the ideal functionality for a zero
knowledge proof of knowledge of the equality of two dis-
crete logs

A.5 Ideal Functionality for Authenticated
Broadcast

We define an ideal functionality for authenticated broadcast with

abort and no fairness. We use a minor modification of the protocol

defined in [26].

Broadcast with Abort
• Pi has input x and sends x to all parties.

• Upon receiving a value x j from Pi , party Pj sends the value

x j to all other parties.

• Party Pj waits to receive a message from each party, and

checks to see if these match the message sent by Pi . If so,
output this message. If not, output ABORT.

This is identical to the UC secure protocol which realizes authenti-

cated broadcast in [26] except that instead of doing nothing upon

receiving mismatched messages, the parties output ABORT. The

proof that the protocol above UC-realizes the ideal functionality

below is almost identical to the proof given of broadcast with abort

and no fairness, where the simulator instead instructs honest par-

ties who receive mismatched values to abort through the ideal

functionality instead of giving them no output. Honest parties in

our protocol who receive ABORT from FBC output ABORT and

terminate.

FBC

(1) Upon receiving a message (m) from some party P , send
(m,P ) to S .

(2) Upon receiving (DELIVER, [IDs]) from S , send (m, P )
to the parties indicated by [IDs]

(3) If any party is corrupted, upon receiving (ABORT,

[IDs]) from S , send (ABORT) to the parties indicated

by [IDs]

Figure 11: FBC , the ideal functionality for authenticated
broadcast with abort



A.6 Secure Communication
This ideal functionality directly defines our communication model

between DPs and CPs, and we take it directly from Canetti[7].

FSC

(1) Upon receiving input (m, S, R) for some messagem and

two parties S, R from S, send (SENT, |m |, S, R) to S .
(2) When S instructs, send (m, S) to R.

Figure 12: FSC , the ideal functionality for secure point-to-
point communication

A.7 PSC
We repeat the definition of the the ideal functionality for PSC from

Figure 2, parameterized by b,n bits of data and noise each

FPSC

(1) Wait until (CORRUPT-CP,C) is received from A. For
each i ∈ C , add CPi to the list of corrupted parties.

(2) Upon receiving (CORRUPT-DP, i) from A, add DPi to

the list of corrupted parties. Note that past inputs to

DPi are not revealed to A upon corruption.

(3) Set vi ← 0
b

for each DPi . Upon receiving

(INCREMENT,k) from DPi , set v
i
k ← 1.

(4) Upon receiving GO from DPi , ignore further messages

from DPi , and send (GO,DPi ) to A.
(5) Upon receiving GO from CPi , ignore further messages

from CPi , and send (GO,CPi ) to A.
(6) Set vA ← 0

b
. Upon receiving (INCREMENT,k) from

A, if any CP or DP is corrupted, set vAk ← 1.

(7) Sample the noise value as N ∼ Bin(n, 1/2), where
Bin(n,p) is the binomial distribution with n trials and

success probability p.

(8) Let wi = max

(
v1i , . . . ,v

d
i ,v

A
i

)
, 1 ≤ i ≤ b. Compute

output z ←
∑b
i=1wi + N . Once GO has been received

from each CP, output z to CPm .

(9) If at any point FPSC receives (ABORT, IDS) fromA, send
ABORT to all parties indicated by IDS and do not send

additional outputs besides other ABORT commands as

directed by A.

Figure 13: FPSC , the Private Set-Union Cardinality ideal
functionality

B PROOFS
B.1 Preliminaries
We deal extensively with vectors of ciphertexts and plaintexts and

write them ®v . We write an individual component k of list ®v as vk .

We assume all parties agree on a session ID which is a prefix

of all messages in the protocol (or else the parties ignore them),

and that they agree on the publicly known group and protocol

parameters д,G,b,n.
We assume perfectly secure point to point channels described

explicitly in Appendix A.6 that leak only the length of each message

between each individual parties, though the only point to point

communication that occurs in the protocol is directly from DPs to

the CPs to submit initial and final shares, which in the implemen-

tation is protected through a symmetric encryption scheme that

we choose not to model explicitly. We assume these channels are

point-to-point secure and implicit in the communication model,

realized through FSC and do not mention the functionality again,

including it only for completeness.

While the CPs execute a single of sequence of computations with

no delay during the run of the protocol, the DPs keep blind counters

and collect data for some significant period of time, and may, during

that time be compromised by some attacker so while we consider

static corruptions to be reasonable to model the behavior of the

CPs, it is an important security property of our protocol that if a

DP is compromised while it is collecting data, the protocol remains

correct and the privacy of the inputs up to that point remains

preserved.

In order to do this we work in the erasure model and allow for

the DPs to securely erase records of their behavior.

So our corruption model is static corruptions with respect to the

CPs, and adaptive with respect to the DPs.

B.2 Proving the simulator correct
We define the simulator S defined in Figure 14. Fix a probabilistic

polynomial time environment Z and assume a dummy adversary A.
S runs a copy of A and simulates the other parties for A’s benefit,
forwarding messages from Z to its simulatedA and back. We define

CPh to be the last honest CP . We note that S has access to the

randomness used for every ciphertext of the CPs as it is provided
to an appropriate ZKP functionality, and that S knows the private

keys for eachCP (it generates the keys for the honest ones, and the

corrupt ones send the private keys to FDL to prove they are not

related to previous keys).

In the following when we say CPh ‘decrypts’ a vector of plain-

texts ®P we mean that CPh takes the first component in each vector

presented to it, αi and broadcasts a vector of the pairs:

(αi ,α
xh+1+...+xm
i дpi )

or if h =m, a vector of (αi ,д
pi ) and proves this operation correct

by instructing FDL to tell every other CP that the decryption was

done correctly.

We need to show that Z cannot with non negligible proba-

bility distinguish between interacting with A in the (FZKP−RR ,

FZKP−DL , FZKP−DLE , FBC , FZKP−S )-hybrid execution and in-

teracting with S in an ideal execution where S has access to only

FPSC .

We define the following sequence of (sequences of) hybrid exe-

cutions which each run Z and output the output of Z . We assume a

dummy adversary A and prove there is no PPT algorithm Z which



Simulation of Aborts. Simulation of aborts: if at any time, an

honest CP aborts, the simulator must send (ABORT, id) to

FPSC where id is the identity of the aborting party.

Extraction. Set CPh as the last honest CP . S instructs every

ZKP functionality to respond to any proof attempt by CPh
with 1, indicating the proof was correct. S runs simulated

honest DPs honestly, and since they are not connected to the

environment Z they receive no INCREMENT instructions

and so always input 0. When S receives (GO, DPi ) for some

honest DPi , DPi proceeds as if it had received GO from Z .
CPh submits an encryption of 0 during data submission. If

any party is corrupted S submits data to FPSC as follows:

After the CPs have aggregated their submissions into the

vector ®c , S recovers the plaintexts using the randomness

submitted to FDL and combines it with the values sent to

CPh by the DPs into a vector ®v sends (INCREMENT,k) to
FPSC for each nonzero bin vk , then submits GO on behalf of

each honest DP .

Computations. Now S waits for FPSC to output its result r
and recovers it, and delays any messages from FPSC to other

parties besides aborts. For the remainder, the simulator

deviates from running the honest participants and ideal

functionalities honestly in the following ways:

(1) During noise generation, instead of CPh presenting a

correct re-encryption permutation of the two values,

present two random encryptions of 2

(2) During re-encryption permutation, instead of CPh pre-

senting a correct re-encryption permutation of the vec-

tor it was given, present in each bin k an encryption of

k
(3) During re-encryption re-randomization, instead ofCPh

presenting a correct re-encryption re-randomization

of the vector it was given, present in each bin k an

encryption of k

(4) During decryption, generate a fake vector
®f of expo-

nential ElGamal plaintexts with r uniformly random

nonzero elements, then (b + n) − r zeros. Generate a

uniformly random permutation π and set
®f = π ( ®f ).

Then if h =m, present
®f on behalf of CPh . Otherwise,

for each bin k , write the first component of bin k of

the vector presented to CPh as αk , write xi as the pri-
vate key ofCPi sent to FDL during key generation and

present the following vector of ciphertexts: for each

component k , present

(αk ,α
xh+1+...+xm
k fk )

on behalf of CPh .

Figure 14: The Ideal Model Simulator S

can distinguish between each adjacent pair of hybrids with non-

negligible probability.

B.2.1 Aborts. If any honest SK aborts at any phase in the pro-

tocol, the future phases do not take place and the view of Z ter-

minates in the ideal execution, (FZKP−RR , FZKP−DL , FZKP−DLE ,

FBC , FZKP−S )-hybrid execution, and every intermediate hybrid

machine: in the hybrid execution, the honestCP terminates, and in

the ideal execution S observes this behavior and sends an appro-

priate ABORT message to FPSC , terminating the protocol. Then

in the following discussion, we consider only executions where

Z does not behave in a manner which causes an abort, and note

that any execution where Z does is a prefix of the one we con-

sider below where the protocol completes; then by showing two

protocol-completing hybrids are indistinguishable, we can infer

two equal-length prefixes of them are indistinguishable as well.

We define a sequence of hybrids. First let D0 be the (FZKP−RR ,

FZKP−DL , FZKP−DLE , FBC , FZKP−S )-hybrid execution.

B.2.2 Data bins. We define the following hybrids Di for 1 ≤

i ≤ b where the increment values given to honest DPs are in-

serted directly by CPh . More specifically, Di is defined exactly as

the (FZKP−RR , FZKP−DL , FZKP−DLE , FBC , FZKP−S )-hybrid ex-

ecution D0 except as follows:

Di

(1) For any honest DP do not increment any bin k ≤ i
even if instructed to.

(2) Initialize a vector of length k of all zeros,
®h and if an

honest CP receives INCREMENT for bin k , increment

hk for that bin by a random value.

(3) For every k ≤ i , add values submitted by each DP to

CPh in bin k to hk and submit hk on behalf of CPh .

Figure 15: Di , hybrids with simulated DPs

We claim that the hybridsD0,D1, ...,Db are identically distributed.

Lemma B.1. Di and Di+1 are identically distributed.

The difference between these two hybrids is that the increment-

ing of bin i + 1 is done by honest DPs in Di and sent to CPh to

forward during data submission and is done by an honest CPh di-

rectly in Di+1, but communication between these two parties is

perfectly secure so that if only honest DPs which are never cor-

rupted increment bin i + 1, this is simply a view change.

If no honest DP is instructed to increment bin i + 1, Di and Di+1
are defined identically.

So consider the case that some honest DPj has been corrupted

after it has incremented bin i + 1.
We can assume without loss of generality Z knows the shares in

bin i + 1 from DPj for every CP besides CPh ’s first share from DPj .
Call this share sh and suppose again without loss of generality that

Z has corrupted DPj before it submits its second shares so that Z
may select them instead of after where it may simply observe them.

While Z only ever observes the encrypted submission of CPh ,
we prove something stronger: that the plaintext p of the value

submitted by CPh in both hybrids is identically distributed.



We show directly that every value in Zp is equally likely to be

submitted byCPh in both hybrids. ConsiderDi and fix some k ∈ Zq .
CPh submits in this hybrid p = sh + s

′
h where sh is its original blind

share, and s ′h is the final one selected by Z . sh is generated by an

honest DP , sent securely to CPh . In this case by assumption the

honest DP has incremented its blind counter T
j
i+1 and securely

erased everything but this soT
j
i+1 is random and independent from

each blind share, including sh . Therefore s
′
h is selected by Z with

no knowledge about sh : Z knows the sum of sh and original value

of T
j
i+1, but has no information about either individual quantity.

So the likelihood CPh submits k is the probability that sh = k − s
′
h

with sh random, which is
1

|Zq |
.

Now consider Di+1. Fix sh , let Z select any s ′h . The hybrid selects

a valuev completely independent of Z andCPh submits sh +v + s
′
h

so the likelihoodCPh submits k is the probability thatv = k−sh−s
′
h

which is
1

|Zq |
.

Then we have the sequence of hybrids: D0,D1, ...,Db are identi-

cally distributed.

B.2.3 Data Bins 2. We define a series of hybrids D2

i where for

bins 1 ≤ i ≤ b, CPh submits an encryption of 0. More specifically,

D2

i is defined exactly as Db except as follows:

D2

i
(1) During data submission, for bins k ≤ i ,CPh submits an

encryption of 0 instead of the correct value.

(2) During decryption for CPh , instead of decrypting bins

k ≤ i correctly, decrypt pk , defined as follows: extract

the submissions from every CP and sum them, along

withhk , then multiply the sum by the re-randomization

factors q1...qm provided by the CPs to FZKP−RR .

Figure 16: D2

i , hybrids with simulated data submission

Set D2

0
= Db . We wish to prove a sequence of hybrid executions,

D2

0
,D2

1
, ...,D2

b are indistinguishable from each other.

We define the following modified IND-CPA game and follow the

method described by Shoup [45].

Game 1
x1

R

← Zq , y1 ← дx1 , r
R

← Zq
y2 ← A(y1), y ← y2y1

b
R

← {0, 1}

m0,m1 ← A(y), α ← дr , β ← yrдmb

ˆb ← A(y,α , β)

Event S1 is the event that b = ˆb.

Figure 17: Game 1, a modification of the IND-CPA game for
ElGamal

Lemma B.2. For any PPT adversary A, |P(S1) − 1/2| < ϵ for ϵ
negligible.

Since this game allows the adversary to control a portion of the

public key, it is not exactly the standard IND-CPA game for ElGamal

so we provide a direct proof.

Distinguisher 1
δ1(η,ν , ρ)
y1 ← η
y2 ← A(y1)

b
R

← {0, 1}

m0,m1 ← A(y), α ← ν , β ← ρдmb

ˆb ← A(y,α , β)

Output b == ˆb

Figure 18: The distinguisher for Game 1

Nowwe note if (η,ν , ρ) is a DDH tuple, then α , β is an encryption

ofmb for some random b just as in Game 1, whereas if (η,ν , ρ) is
not a DDH tuple, β is uniformly random and independent from b
since ρ is, which means any algorithm playing this game has zero

advantage. So for uniformly random independent z1, z2, z3:

|P(δ (дz1 ,дz2 ,дz1z2 ) = 1) − P(δ (дz1 ,дz2 ,дz3 ) = 1)| < ϵ

where ϵ is negligible for any algorithm A by the DDH assumption.

And in particular for A = δ this gives |P(S1) − 1/2| is negligible.

Lemma B.3. If there exists some Z that has non negligible advan-

tage distinguishing between D2

i and D
2

i+1, there exists an adversary

for Game 1 which has non-negligible advantage.

We play Game 1. Our distinguisher accepts y1 from Game 1 and

is expected to produce y2. It begins the protocol, broadcasting y1
as the public key of CPh , and lets

y2 =
∏
k,h

дxk

so that y in Game 1 is the joint shared public key for the protocol

execution.

Then givem0 ← 0,m1 ← pi+1 as defined above to the challenger
in Game 1 and submit (α , β) as the submission forCPh for bin i + 1.

Then we respond to the challenger in Game 1 with the response

of Z in the protocol execution. We note that if b = 0, Z is inter-

acting with D2

i whereas if b = 1, Z is interacting with D2

i+1. So

Z ’s advantage in distinguishing the two hybrids is equal to our

advantage in Game 1, which must be negligible.

The decrypted value in both hybrids ispk or the same encryption

of it.

So we have a sequence of hybrids D2

0
, ...D2

b which are adjacent-

wise indistinguishable.

B.2.4 Noise Bins. We define a hybrid for each 1 ≤ i ≤ n where

the noise ciphertexts are replaced by dummy ciphertexts. More

specifically, Ni is defined exactly as D2

b except as follows:



Ni

(1) For k ≤ i , during noise generation for bin k , CPh
presents two random encryptions of 2 instead of an

encryption of 0 and 1.

(2) During decryption, for each bin k generate a random

permutation πkh and calculate the plaintext pk for noise

bit k using permutation πkh and re-randomization fac-

tors q1...qm , then decrypt pk on behalf of CPh

Figure 19: Ni the hybrids where we replace noise calcula-
tions

Lemma B.4. If there exists some Z that has non negligible advan-

tage distinguishing between Ni and Ni+1, there exists an adversary

for Game 1 which has non-negligible advantage.

We play Game 1 and consider a hybrid which only changes the

first bin, N ′i+1:
As before, sety1 as the public key ofCPh , and give the challenger

y2 so that the joint public key in the execution is y in Game 1. Then

setm0 = 2, and setm1 as the plaintext in the first ciphertext given

toCPh for noise generation bit i+1. Then replace the first ciphertext
with α , β from the challenger in Game 1. Output the output of Z .

We note that if b = 1, then this is identically Ni . If b = 0 ,then

this is N ′i . So that if Z can distinguish between Ni ,N
′
i with non-

negligible probability, we have constructed an adversary for Game

1 which succeeds with non-negligible probability which contradicts

lemma B.2.

Then consider the transition from N ′i to Ni+1. We play the iden-

tical game but replace the second bin as well and the argument

is identical, so that we have a sequence: Ni ,N
′
i ,Ni+1 of hybrids

which are adjacentwise indistinguishable for every i , so we have a

sequence of hybrids: D2

b = N0,N
′
0
,N1,N

′
1
, ...,Nn

B.2.5 Noise Bins 2. We define the following hybrid which inde-

pendently generates the noise bits according to a fixed distribution

independent of Z during decryption. More specifically, N 2

n is de-

fined exactly as Nn except as follows:

N 2

n
(1) During decryption, for each k ≤ n, generate bk uni-

formly in {0, 1}. Then on behalf of CPh present an en-

cryption of bkq1q2...qm to the remaining CPs where
qi is the re-randomization factor provided by CPi .

Figure 20: The noise view-change hybrids

Lemma B.5. N 2

n and Nn are identically distributed.

The determination of the plaintext in each execution is done

by random selection independent of Z with the same distribution:

In Nn we select, for each k , πh
R

← {(1), (12)} (where we define

permutations in cyclic notation) and in N 2

n we select bk
R

← {0, 1}.

Fix the parity of the number s of non-identity permutations selected

by Z for a given noise bin k in a given execution. Then if s = 0,

selecting πh = (1) is selecting bk = 0, whereas selecting πh = (12)
is selecting bk = 1, and if s = 1 the choices are reversed. The

distributions in each case are identical, which is the only difference

between Nn and N 2

n .

B.2.6 Permutation. We define the following sequence of hybrids

for 1 ≤ i ≤ b + n where we replace each permutation ciphertext

with a dummy ciphertext. More specifically, Pi is defined exactly

as N 2

n except as follows:

Pi

(1) During re-encryption permutation for CPh , generate a
permutation πh and for bins k ≤ i , replace the cipher-
text in bin k with a random encryption of k . For bins
k > i permute and re-encrypt honestly according to

πh .
(2) During decryption for CPh , for bins k ≤ i calculate the

final plaintexts as if πh were applied to the ciphertexts

by CPh . Decrypt these values on behalf of CPh .

Figure 21: Pi , hybrids where the permutations are simulated

Let P0 = N 2

n .

Lemma B.6. If there exists some Z that has non negligible advan-

tage distinguishing between Pi and Pi+1, there exists an adversary

for Game 1 which has non-negligible advantage.

Fix an i and suppose there exists such a Z . We play Game 1.

Receive y1 from the challenger in Game 1 and present it as the

public key of CPh . Give y2 as the joint public key of the remaining

CPs so that y in Game 1 is the joint public key for the protocol.

Run the protocol as in N 2

n until the re-encryption permutation for

CPh . Select a random permutation πh and determine the vector

v an honest CPh would present as a re-encryption permutation.

Setm0 = vi+1 where vi+1 is the plaintext in bin i + 1 of vector v .
Setm1 = i + 1. Generate the vector for CPh to broadcast defined

componentwise as follows: For components k < i + 1, present a

random encryption of k . For component i + 1, present α , β from the

challenger in Game 1. For k > i + 1, present an encryption of vk as

in N 2

n .

During decryption, calculate the plaintext that would have been

generated using re-randomization factors q1, ...,qm and the permu-

tations and re-encryption factors provided by all other CPs and πh .
Present the encryption of these plaintexts for the remaining CPs
(or the plaintexts, ifm = h) and give the challenger in Game 1 the

output of Z .
Now only the value in bin i + 1 changes, and that if b in Game

1 is 0, then α , β is the correct value for bin i + 1 for an honestly

generated re-encryption permutation, so this is exactly the value

in bin i + 1 for Pi . If b in Game 1 is 1, then it is an encryption of

i + 1 which is exactly the value for bin i + 1 in Pi+1.



Then if Z can distinguish between Pi and Pi+1 with non negligi-

ble advantage, then the scheme above is an adversary for Game 1

with non negligible advantage, which is a contradiction by Lemma

B.2.

So we have the sequence of hybrids: N 2

n = P0, P1, ..., Pb+n
which are adjacentwise indistinguishable.

B.2.7 Permutation 2. Now we define the hybrid P2b+n which

generates a permutation at random independent from the view of Z
to apply to the plaintexts. More specifically, P2b+n is defined exactly

as Pb+n except as follows:

P2b+n
(1) During decryption, sort all of the plaintexts in the vec-

tor presented to CPh , then shuffle them according to a

random permutation πh .
(2) For each bin, present an encryption of the shuffled plain-

texts behalf of CPh to the remaining CPs

Figure 22: P2, permutation view-change hybrids

In Pb+n CPh submits no information about any permutation to

Z since all the values are dummy values. More explicitly, consider

the composed permutation of the plaintexts in both hybrids.

In Pb+n , the permutation is some composition πP1 = π1 ◦πh ◦π2
where without loss Z has selected π1,π2 (letting π1 or π2 be the
identity if h = 1 or h =m), and πh is random.

Whereas in P2b+n , the permutation is πP2 = πs ◦ π where πs is
the permutation which sorts the plaintexts, then π is random.

Lemma B.7. πP1 and πP2 are identically distributed.

Each permutation π is selected in P2b+n with probability
1

(b+n)!
and for each π there exists a unique πh such that πP1 = πP2:

Every permutation is invertible so we let

πh = π−1
1
◦ πs ◦ π ◦ π

−1
2

and note that the probability this πh is selected in Pb+n is
1

(b+n)!
which is the same as in P2b+n .

Corollary B.8. Pb+n and P2b+n are identically distributed

Since only these permutations are changed between Pb+n , P
2

b+n
and the permutations are identically distributed, the hybrids them-

selves are identically distributed.

B.2.8 Re-randomization. We define the following sequence of

hybrids for 1 ≤ i ≤ b + n which replace each ciphertext during

re-randomization with a dummy. More specifically, Ri is defined
exactly as P2b+n except as follows: We let R0 = P2b+n .

Lemma B.9. If there exists some Z that has non negligible advan-

tage distinguishing between Ri and Ri+1, there exists an adversary

for Game 1 which has non-negligible advantage.

Fix i . Then as before we play Game 1.

Ri

(1) During re-randomization forCPh , for k ≤ i , replace the
ciphertext in bin k with a random encryption of k .

(2) During decryption for CPh , for i ≤ k , calculate the

expected decryption using the correct values and re-

randomization factors q1...qm and decrypt these on

behalf of CPh .

Figure 23: Ri , hybrids where rerandomization-reencryption
is simulated

Our Re-encryption Re-randomization ZKP allows for an adver-

sary to select q = 0 and present a proof that verifies correctly. But

if Z selects q = 0 for any q, it must broadcast a pair of the form:

(дr 0,д(xr+m)0) = (д0,д0) = (1, 1)

and that if this is observed by any honest CP , that CP executes

ABORT. We present y1 from Game 1 as the public key of CPh , and
set y2 as the product of the public keys for the other CPs .

During re-randomization for CPh , for bins k where k < i + 1,

present a random encryption of k . For bin i + 1, find the plaintext

pi+1 in bin i + 1, select a uniformly random qh , 0 and setm0 in

Game 1 as pi+1qh . Setm1 as i + 1, and present α , β from Game 1

as bin i + 1. Then for k > i + 1, present a correct reencryption-

rerandomization of the ciphertext in bin k .
If b = 0 in Game 1, then the value in bin i + 1 is:

(дr
′

,дr
′x+pi+1qh )

for r ′ uniformly random. We claim this is a uniformly randomly se-

lected re-encryption re-randomization of the previous value (дr ,дrx+pi+1 ).
This means it has the form:

(д(r+s)q ,д(r+s)qx+qpi+1 )

for random s,q , 0. For random r ′,qh , 0 we show that there exist

unique s,q which satisfy this form.

Set q = qh , then set r ′ = (r + s)q so that s = r ′q−1 − r . Then it is

easy to see the ciphertext

(дr
′

,дr
′x+pi+1qh ) = (д(r+s)q ,д(r+s)qx+qpi+1 )

which is a valid re-encryption re-randomization using parameters

q, s .
Since q = qh they are selected identically, and we consider s .

It is easy to see each s defines a unique r ′ by the linear mapping

defined above and so we conclude for each pair (q, r ′) with q , 0,

there is a unique pair (qh , s) with qh , 0 so we conclude (α , β) in
this case is a uniformly random re-encryption re-randomization of

the previous value if b = 0 so this is Ri .
Then if b = 1, (α , β) is an encryption of i + 1 exactly as in Ri+1.
We respond to the challenger in Game 1 with the output of Z

and conclude the advantage of Z in distinguishing between Ri ,Ri+1
is equal to the advantage in Game 1 defined above, and so must be

negligible.



B.2.9 Re-randomization 2. We define the hybrid which selects

uniformly random elements to replace each nonzero plaintext dur-

ing decryption independent from the view of Z . More specifically,

R2b+n is defined exactly as Rb+n except as follows:

R2b+n
(1) During decryption for CPh , for every element k in the

vector presented toCPh , if the plaintext of element k is

not zero, generate a random new nonzero plaintext pk .
If the plaintext of element k is zero, set pk = 0. Present

an encryption of the pk to the remaining CPs .

Figure 24: R2, reencryption-rerandomization view change
hybrids

Lemma B.10. Rb+n and R2b+n are identically distributed.

In Rb+n , the re-randomization factor for CPh , qh , is selected
during decryption completely independent of the view ofZ up until

that point. For every k in the final vector, note that if the plaintext in

k is 0,Rb+n andR2b+n are identical. Otherwise, we compare selecting

the final plaintext pk randomly to selecting it based on a correct

re-randomization. We know each re-randomization factor qi is not
zero: honest CPs never select zero, and if a dishonest CP presents

a re-randomization with 0, all the honest CPs abort. So the final

plaintext in this case is q1qhq2 with q1,q2 selected by Z , possibly 1

ifh = 1 orh =m. Then for any nonzero randomly selected plaintext

pk there is a unique nonzero qh so that q1qhq2 = pk which is easy

to see that for every pk , there is a unique qh = (q1q2)
−1pk so that a

random selection of is identical to a random selection of the other

and the final plaintexts in each hybrid are identically distributed,

which is the only difference between Rb+n ,R
2

b+n

B.2.10 Ideal Model. All of the behavior in R2b+n is exactly what

is done by the simulator except S does not have access to the in-

crements given to the honest DPs and instead must get this value

combined with the noise from FPSC . Recall that the output of FPSC
is the componentwise OR of the increments given by the honest

DPs , and ®vs which is the plaintexts submitted by corrupt DPs and
CPs as extracted from the vector of submissions ®c . However when
an honest DP increments a bin in the ideal execution, FPSC records

this bin as nonzero regardless of any other behavior while in the

hybrid R2b+n it is possible for honest DPs to increment some bin

and then have this reversed by corrupt CPs and DPs , so that the

bin is 0 in the R2b+n and nonzero in the ideal execution. We show

this happens with negligible probability.

We define I , the final hybrid. More specifically, I is defined exactly
as R2b+n except as follows:

Lemma B.11. I outputs FAIL with negligible probability

By construction, hk is the inputs given to CPh by the DPs along
with a valuev generated byCPh . But no information aboutv is ever

revealed or used until the decryption phase, which occurs after I
chooses whether or not to output FAIL. Then for I to output FAIL, Z

I

(1) Record externally every increment instruction given to

an honest DP . If some honestDP receives an increment

instruction for some bin k , and during data submission

the sum for that bin combined with hk is 0, output FAIL.

Figure 25: I , a hybridwhere data submission and aggregation
is perfect

must guess a valuev fromwhich its view is statistically independent,

so this happens with probability
1

|Zq |
which is negligible.

Lemma B.12. The execution of I conditioned on not outputting

FAIL is distributed identically to the view of Z interacting with S in

the ideal model.

The number of nonzero bins calculated by FPSC is now calcu-

lated identically to the number in I , since no incremented bin saved

by FPSC by some honest DP is later reduced to 0 (this triggers a

FAIL output). So this is identically the execution with S in the ideal

model.

Theorem B.13. The PSC protocol defined in section 4 UC-realizes

the ideal functionalityFPSC in the (FZKP−RR ,FZKP−DL ,FZKP−DLE ,

FZKP−S , FBC )-hybrid model with point to point secure communica-

tion if at least one CP is honest and no CP is corrupted adaptively.

I is a hybrid which is, conditioned on a negligible event FAIL

not occurring, identical to S interacting with Z in the ideal execu-

tion, and D0 is the (FRR , FDL , FDLE , FBC , FRS )-hybrid execution

and we have a finite sequence of hybrids D0, ..., I which are all

adjacentwise either identically distributed or computationally in-

distinguishable.


	Abstract
	1 Introduction 
	2 Background 
	3 Overview 
	4 Protocol Details 
	4.1 Preliminaries
	4.2 Initialization and Data Collection
	4.3 Aggregating Inputs
	4.4 Noise Generation
	4.5 Shuffling, Re-randomization, and Decryption
	4.6 Optimizations

	5 Security Analysis 
	5.1 Protocol Security
	5.2 Protocol Privacy

	6 Implementation and Evaluation 
	6.1 Implementation
	6.2 Evaluation

	7 Related Work 
	8 Conclusion 
	References
	A Ideal Functionalities
	A.1 ZKP of Re-encryption Re-randomization
	A.2 ZKP of a Re-encryption shuffle
	A.3 ZKP of Knowledge of Discrete Log
	A.4 ZKP of Knowledge of Equality of Discrete Logs
	A.5 Ideal Functionality for Authenticated Broadcast
	A.6 Secure Communication
	A.7 PSC

	B Proofs
	B.1 Preliminaries
	B.2 Proving the simulator correct


